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Biological intelligence is remarkable in its ability to produce complex behavior in many

diverse situations through data efficient, generalizable, and transferable skill acquisition.

It is believed that learning “good” sensory representations is important for enabling

this, however there is little agreement as to what a good representation should look

like. In this review article we are going to argue that symmetry transformations are a

fundamental principle that can guide our search for what makes a good representation.

The idea that there exist transformations (symmetries) that affect some aspects of the

system but not others, and their relationship to conserved quantities has become central

in modern physics, resulting in a more unified theoretical framework and even ability

to predict the existence of new particles. Recently, symmetries have started to gain

prominence in machine learning too, resulting in more data efficient and generalizable

algorithms that can mimic some of the complex behaviors produced by biological

intelligence. Finally, first demonstrations of the importance of symmetry transformations

for representation learning in the brain are starting to arise in neuroscience. Taken

together, the overwhelming positive effect that symmetries bring to these disciplines

suggest that they may be an important general framework that determines the structure

of the universe, constrains the nature of natural tasks and consequently shapes both

biological and artificial intelligence.
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1. INTRODUCTION

Neuroscience and machine learning (ML) have a long history of mutually beneficial interactions
(Hassabis et al., 2017), with neuroscience inspiring algorithmic and architectural improvements
in ML (Rosenblatt, 1958; LeCun et al., 1989), and new ML approaches serving as computational
models of the brain (Yamins et al., 2014; Yamins and DiCarlo, 2016; Wang et al., 2018; Dabney
et al., 2020). The two disciplines are also interested in answering the same fundamental question:
what makes a “good” representation of the often high-dimensional, non-linear, and multiplexed
sensory signals to support general intelligence (Bengio et al., 2013; Niv, 2019). In the same way as
the adoption of the decimal system for representing numbers has produced an explosion in the
quantity of numerical tasks that humans could solve efficiently (note that the information content
remained unaffected by this change in the representational form), finding a “good” representation
of the sensory inputs is likely to be a fundamental computational step for enabling data efficient,
generalizable, and transferrable skill acquisition. While neuroscientists go about trying to answer
this question by studying the only working instantiation of general intelligence—the brain, ML
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scientists approach the same problem from the engineering
perspective, by testing different representational forms in the
context of task learning through supervised or reinforcement
learning (RL), which allows faster iteration. In this review we will
discuss how bringing the idea of symmetry transformations from
physics into neural architecture design has enabled more data
efficient and generalizable task learning, and how this may be of
value to neuroscience.

The reason why it makes sense to turn to physics when it
comes to understanding the goal of perception in artificial or
biological intelligence, is because intelligence evolved within the
constraints of our physical world, and likewise, the tasks that
we find interesting or useful to solve are similarly constrained
by physics. For example, it is useful to know how to manipulate
physical objects, like rocks, water or electricity, but it is less useful
to know how to manipulate arbitrary regions of space (which
also do not have a word to describe them, further highlighting
their lack of relevance). Hence, a representation that reflects
the fundamental physical properties of the world is likely to be
useful for solving natural tasks expressed in terms of the same
physical objects and properties. Symmetry transformations are a
simple but fundamental idea that allows physicists to discover
and categorize physical objects—the “stubborn cores that remain
unaltered even under transformations that could change them”
(Livio, 2012), and hence symmetries are a good candidate for
being the target of representation learning.

The study of symmetries in physics (that is, the
transformations that leave the physical “action” invariant)
in its modern form originates with Noether’s Theorem (Noether,
1915), which proved that every conservation law is grounded
in a corresponding continuous symmetry transformation.
For example, the conservation of energy arises from the time
translation symmetry, the conservation of momentum arises
from the space translation symmetry, and the conservation
of angular momentum arises due to the rotational symmetry.
This insight, that transformations (the joints of the world) and
conserved properties (the invariant cores of the world that
words often tend to refer to Tegmark, 2008) are tightly related,
has led to a paradigm shift in the field, as the emphasis in
theoretical physics changed from studying objects directly to
studying transformations in order to discover and understand
objects. Since the introduction of Noether’s theorem, symmetry
transformations have permeated the field at every level of
abstraction, from microscopic quantum models to macroscopic
astrophysics models.

In this paper we are going to argue that, similarly
to physics, a change in emphasis in neuroscience from
studying representations in terms of static objects to
studying representations in terms of what natural symmetry
transformations they reflect can be impactful, and we will use
the recent advances in ML brought about by the introduction
of symmetries to neural networks to support our argument. By
introducing the mathematical language of group theory used
to describe symmetries, we hope to provide the tools to the
neuroscience community to help in the search for symmetries in
the brain. While ML research has demonstrated the importance
of symmetries in the context of different data domains, here we

will mainly concentrate on vision, since it is one of the most
prominent and most studied sensory systems in both ML and
neuroscience. For this reason, topics like the importance of
symmetries in RL will be largely left out (although see Agostini
and Celaya, 2009; Anand et al., 2016; Madan et al., 2018; van der
Pol et al., 2020; Kirsch et al., 2021). We will finish the review by
describing some of the existing evidence from the neuroscience
community that hints at symmetry-based representations in the
ventral visual stream.

2. WHAT ARE SYMMETRIES?

2.1. Invariant and Equivariant
Representations
Given a task, there often exist transformations of the inputs that
should not affect it. For example, if one wants to count the
number of objects on a table, the outcome should not depend
on the colors of those objects, their location or the illumination
of the scene. In that case, we say the output produced by
an intelligent system when solving the task is invariant with
respect to those transformations. Since the sensory input changes
with transformations, while the output is invariant, we need to
decide what should happen to the intermediate representations.
Should they be invariant like the output or should they somehow
transform similarly to the input?

Much of the research on perception and representation
learning, both in ML and neuroscience, has focused on object
recognition. In ML, this line of research has historically
emphasized the importance of learning representations that are
invariant to transformations like pose or illumination (Lowe,
1999; Dalal and Triggs, 2005; Sundaramoorthi et al., 2009;
Soatto, 2010; Krizhevsky et al., 2012). In this framework,
transformations are considered nuisance variables to be thrown
away (Figures 1A, 2B). Some of themost successful deep learning
methods (Krizhevsky et al., 2012; Mnih et al., 2015; Silver et al.,
2016; Espeholt et al., 2018; Hu et al., 2018; Dai et al., 2021)
end up learning such invariant representations (see Tishby et al.,
1999; Tishby and Zaslavsky, 2015 for a potential explanation of
why this happens in the context of supervised learning). This
is not a problem for narrow intelligence, which only needs to
be good at solving the few tasks it is explicitly trained for,
however, discarding “nuisance” information can be problematic
for general intelligence which needs to reuse its representations
to solve many different tasks, and it is not known ahead of
time which transformations may be safe to discard. It is not
surprising then that despite the enormous success of the recent
deep learning methods trained on single tasks, they still struggle
with data efficiency, transfer, and generalization when exposed
to new learning problems (Garnelo et al., 2016; Lake et al.,
2016; Higgins et al., 2017b; Kansky et al., 2017; Marcus, 2018;
Cobbe et al., 2019).

Similarly to ML, in neuroscience ventral visual stream is
traditionally seen to be progressively discarding information
about the identity preserving transformations of objects
(Fukushima, 1980; Tanaka, 1996; Poggio and Bizzi, 2004; Yamins
et al., 2014).While neurons in the early processing stages, like V1,
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FIGURE 1 | Different approaches to dealing with symmetries in neural networks. Both figures represent a neural network transforming an image, and a rotated image.

The gray 3× 3 squares are activations of the neural networks. (A) Inputs transform with symmetries, but hidden features and outputs are invariant. (B) Inputs and

hidden features transform with symmetries, only outputs are invariant.

FIGURE 2 | Different hypothesized coding properties of neurons at the start (A) and end (B,C) of visual processing in neural networks and the brain. Top row,

schematic representation of manifolds representing two classes of robots: blue manifold contains robots that vary in the shape of their head, arms, legs, and body;

red manifold contains robots that have no body and vary in the shape of their head, arms and legs only. Bottom row, schematic representation of the activations of a

single idealized real or artificial neuron in response to variations in the visual stimulus. (A) (Top) Early processing stages have entangled high-dimensional manifolds. All

information about the two robot categories, and their identity preserving transformations is present, but is hard to read out from the neural activations. Arrows

represent the high-dimensional space spanned by all V1 neurons. (Bottom) Line plot shows the activation of a single idealized neuron in response to different robot

variations. Neuron responds to robots from both classes. (B): “Exemplar” or invariant representation at the end of visual processing. Top: Single neurons have maximal

firing for the prototype example of their preferred robot class (blue—with, red—without body). All information about the identity preserving transformations has been

collapsed (illustrated by red or blue points), which makes object classification easy, but any other task (like clustering robots based on their arm variation) impossible.

Arrows represent the high-dimensional space spanned by the higher-order neurons, arrow color represents preferred stimulus of the neuron. Bottom left: activation of

a single idealized neuron to all robot variations from both classes. Lighter, higher activation. Big blue circle indicates preferred stimulus for neuron, resulting in highest

activation, smaller blue circles indicate other robots resulting in lower to no activation. Blue arrow, cross section of robot variations shown in the line plot. Bottom right:

line plot shows activation of the same idealized neuron as on the left but in the cross section of robot variations spanned by the blue arrow. Response declines

proportionally to the distance from the preferred stimulus (big blue circle). (C) “Axis” or equivariant representation at the end of visual processing. Top: two robot

classes have been separated into different representational manifolds, which are also aligned in terms of the shared transformations (e.g., both robot classes have

similar identity preserving transformations in head shape, spanned by green axis; and arm shape, spanned by purple axis). This makes it easy to classify the robots,

and solve other tasks, like clustering robots based on their arm variations. Bottom left: activation of a single idealized neuron to robot variations along the head shape

change axis (green) and arm shape change axis (purple). Lighter, higher activation. Neuron has a ramped response proportional to changes in its preferred

transformation (changes in head shape, green), and no change in firing to other transformations (e.g., changes in arm shape, blue). Bottom right: as in (B), but the

cross section is spanned by the purple axis. Green dot indicates higher neural activation in response to a change in the robot head shape.

are meant to represent all information about the input stimuli
and their transformations in high-dimensional “entangled”
manifolds, where the identities of the different objects are hard

to separate (Figure 2A), later in the hierarchy such manifolds are
meant to collapse into easily separable points corresponding to
individual recognizable objects, where all the information about
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the identity preserving transformations is lost, resulting in the
so called “exemplar” neurons1 following the naming convention
of Chang and Tsao (2017). In this view, every neuron has a
preferred stimulus identity in response to which the neuron
fires maximally, while its response to other stimuli decreases
proportionally to their distance from the preferred stimulus
(Figure 2B).

An alternative point of view in both disciplines has advocated
that instead of discarding information about the identity
preserving transformations, information about these factors
should be preserved but reformatted in such a way that
aligns transformations within the representations with the
transformations observed in the physical world (Figures 1B, 2C),
resulting in the so called equivariant representations (DiCarlo
and Cox, 2007; Hinton et al., 2012; Bengio et al., 2013). In the
equivariant approach to perception, certain subsets of features
may be invariant to specific transformations, but the overall
representation is still likely to preserve more overall information
than an invariant representation, making them more conducive
of diverse task learning (Figure 1B). For example, some hidden
units may be invariant to changes in the object color, but
will preserve information about object position, while other
hidden units may have an opposite pattern of responses, which
means that information about both transformations will be
preserved across the whole hidden layer, while each individual
subspace in the hidden representation will be invariant to
all but one transformation. Researchers in both neuroscience
and ML communities have independently hypothesized that
equivariant representations are likely to be important to support
general intelligence, using the terms “untangling” (DiCarlo and
Cox, 2007; DiCarlo et al., 2012) and “disentangling” (Bengio,
2009, 2012; Bengio et al., 2013), respectively. We are next
going to introduce the mathematical language for describing
symmetry transformations and use it to discuss how adding
neural network modules that are equivariant to such symmetry
transformations can improve data efficiency, generalization, and
transfer performance in ML models.

2.2. Defining Symmetries and Actions
Symmetries are sets of transformations of objects, and the same
abstract set of symmetries can transform different objects. For
example, consider the set of rotations by multiple of 90◦ and
reflections along both horizontal and vertical axis, known as
the dihedral group D4 (Dummit and Foote, 1991). By rotating
images, symmetries from D4 can be applied to images of cats
or tea pots, either 32 × 32 or 1, 024 × 1, 024, color or black
and white. In mathematics, the concept of symmetries, that is
transformations that are invertible and can be composed, is
abstracted into the concept of groups. For example, D4 is a group
with eight elements (Figure 3).

More formally, a group G is defined as a set with a binary
operation (also called composition or multiplication)

G× G → G
(g1, g2) 7→ g1 · g2,

(1)

1These are also referred to as “grandmother cells” in the literature.

such that

1. the operation is associative: (g1 · g2) · g3 = g1 · (g2 · g3);
2. there exists an identity element e ∈ G such that e · g = g · e =

g,∀g ∈ G;
3. all elements are invertible: for any g ∈ G, there exists g−1 ∈ G

such that g · g−1 = g−1 · g = e.

Note how we defined a group as a set of symmetries, without
explicitly saying what these are symmetries of. That’s because
the concept of group in mathematics seeks to study properties
of symmetries that are independent of the objects being
transformed. In practice though, we will of course want to apply
symmetries to objects. This is formally defined as an action.2

For example, the group D4 can act on both 32 × 32 gray-scale
images, that is R32×32, and on 1, 024 × 1, 024 color images, that
is R1,024×1,024×3.

More formally, given a groupG and a set X, an action3 ofG on
X is a map

G× X → X
(g, x) 7→ g · x,

(2)

such that

1. the multiplication of the group and the action are compatible:
g1 · (g2 · x) = (g1 · g2) · x;

2. the identity of the group leaves elements of X invariant:
e · x = x.

Note how we overloaded the symbol · to define both a
multiplication in the group, and an action on a set. This makes
sense becausemultiplication of the group defines an action of that
group on itself. The identity e leaves all elements in X invariant
e·x = x, but for a given x, there can exist g 6= e such that g ·x = x,
for example in Figure 3B.

Two elements of a group are said to commute if the order in
which we multiply them does not matter. Formally, we say that
g1, g2 ∈ G commute if g1 · g2 = g2 · g1. If all the elements in
the groups commute with each other, the group itself is called
commutative.4 Even if a group is not commutative, it might still
be a product of two subgroups that commute with each other.
For example, assume you have three cubes of different sizes and
colors, and three pyramids of different sizes and colors. If these
objects are put on three different tables, each with a cube and
a pyramid, we can move the cubes around while leaving the
pyramids where they are, or we can move the pyramids and leave
the cubes untouched. The action of re-ordering the cubes is an
action of the group of permutations over three elements S3. Here
we are making that group act on our arrangement of cubes and
pyramids, by leaving the pyramids invariant. The action of re-
ordering the pyramids is also an action of S3. So, overall, we have
an action of S3 × S3. The group as a whole is not commutative,
since each of the S3 is not, but it does not matter if we reorder
the pyramids first, or the cubes first. Formally, this means that

2This kind of action is distinct from the action in physics; here, it just refers to the

action of an operator.
3To be precise, we are defining here a left action.
4The term Abelian is also used in the literature.
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FIGURE 3 | All 8 transformations of an image under the dihedral group D4. Rotations by 90◦ are applied along the inner and outer circles. Reflections are applied

along straight lines. (A) While the image is transformed, some properties, such as the teapot identity or color, are invariant with respect to the applied transformations.

(B) Symmetric images are left invariant by some elements of D4, and modified by others.

as a set G = G1 × G2, where G1 and G2 are themselves groups,
and all elements of G1 commute with all elements of G2. This last
commutation requirement is important. Indeed, consider once
again the case of D4. Let F be the subgroup made of the identity
and the reflection along the vertical axis. And let R be the group
made of rotations by 0, 90, 180, and 270◦. Any element of D4 can
be written in a unique way as f · r for (f , r) ∈ F × R, but since
f · r 6= r · f , it is not true that D4 is equal to F × R as a group.

We just mentioned the idea that some properties are preserved
by symmetries. Indeed, while a group action defines how
elements of a set are transformed, it is often useful to also
consider what is being preserved under the action. For example,
consider a Rubik’s cube. Algorithms on how to solve a Rubik’s
cube use steps described by simple transformations such as
"rotate left face clockwise" or “rotate front face anti-clockwise.”
The set of all transformations built by such simple rotations of
faces forms a group, and that group acts on the Rubik’s cube by
modifying the colors on faces. But what is being preserved here?
The answer is the structure of the cube. Indeed, after any of these
transformations, we still have a cube with faces, each made of 9
squares arranged in a regular 3×3 grid. In the case of our dihedral
group D4 in Figure 3, colors but also relative distances are being
preserved: two pixels in the original image will move to a new
location in a rotated image, but their distance from each other is
unchanged, thus preserving the object identity.

We are now ready to define the concepts of invariant
and equivariant maps—the building blocks for obtaining the
invariant and equivariant representations we introduced earlier.
Lets start with invariance. Formally, if a group G acts on a space
X, and if F :X → Y is a map between sets X and Y , then F is
invariant if F(g · x) = F(x),∀(g, x) ∈ G×X. In words, this means
that applying F to a point or to a transformed point will give the
same result. For example, in Figure 3, the map that recognizes a
tea pot in the input picture should not depend on the orientation

of the picture. Invariant maps delete information since knowing
y = F(x) does not allow to distinguish between x and g · x. If the
invariant features required to solve a task are highly non-linear
with respect to the inputs, then we might want to first transform
the inputs before extracting any invariant information. And here
we need to be careful, because ifH is anymap while F is invariant,
it will not be true in general that F(H(x)) is invariant. On the
other hand, we will see that if H is equivariant, then F(H(x))
will indeed be invariant. Let us now define equivariance: if G is
a group acting on both spaces X and Y , and H :X → Y is a
map between these spaces, then H is said to be equivariant if
for any g ∈ G and any x ∈ X, we have H(g · x) = g · H(x).
In words, it does not matter in which order we apply the group
transformation and the map H. We can now verify our earlier
claim: if H is equivariant and F is invariant, then F(H(g · x)) =
F(g · H(x)) = F(H(x)), and F ◦ H is indeed invariant. As we will
see later, this recipe of stacking equivariant maps followed by an
invariant map, as shown in Figure 1B, is a commonly used recipe
in ML (Bronstein et al., 2021).

So far we have considered discrete symmetries. However,
many of the symmetries encountered in the real world are
continuous. A group of symmetries is said to be continuous if
there exist continuous paths between symmetries. For example,
in the group of 2D rotations, we can create paths by smoothly
varying the angle of the rotations. On the other hand, if we
only allow rotations by multiple of 90◦, then it is not possible
to move smoothly from a rotation by 180◦ to a rotation by
270◦. In that case, the group is said to be discrete.5 A simple

5Some groups will have both continuous and discrete aspects. For example, the

group of all invertible matrices of a given size has a clear continuous aspect,

but it also has a discrete aspect as we cannot move continuously from a matrix

with positive determinant to a matrix with negative determinant without hitting a

matrix with determinant 0.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 836498

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Higgins et al. Symmetries in ML and Neuroscience

FIGURE 4 | Symmetries let us reduce the volume of the domain on which our models need to learn. (A) The original problem domain. (B) With one symmetry, a

reflection along a plane, we can half the domain on which we need to learn. (C) Further symmetries keep on reducing the volume of domain problem.

approach to handle continuous symmetries used in practice in
ML is to fall back to the discrete case by approximating the
full group of continuous symmetries by a subgroup of discrete
ones. For example, the group of rotations of the 2D plane can
be approximated by only considering rotations by 360

N

◦
, although

this can become computationally expensive for very large groups
(Finzi et al., 2020).While other approaches that truly handle a full
group of continuous symmetries do exist (Rezende et al., 2019,
2020; Huang et al., 2020; Köhler et al., 2020; Pfau et al., 2020a;
Cohen et al., 2021; Katsman et al., 2021; Papamakarios et al., 2021;
Rezende and Racanière, 2021), we will concentrate on discrete
symmetries in this paper for simplicity.

3. IMPLEMENTATION AND UTILITY OF
SYMMETRIES IN ML

Although not always explicitly acknowledged, symmetries have
been at the core of some of the most successful deep neural
network architectures. For example, convolutional layers (CNNs)
(LeCun and Bengio, 1995) responsible for the success of the
deep classifiers that are able to outperform humans in their
ability to categorize objects in images (Hu et al., 2018; Dai et al.,
2021) are equivariant to translation symmetries characteristic
of image classification tasks, while graph neural networks
(GNNs) (Battaglia et al., 2018) and attention blocks commonly
used in transformer architectures (Vaswani et al., 2017) are
equivariant to the full group of permutations. While there
are several reasons, including optimization considerations, why
these architectural choices have been so successful compared
to MLPs (Rosenblatt, 1958)—the original neural networks, one
of the reasons is that these architectures reflect the prevalent
symmetry groups of their respective data domains, while the
linear layers used in MLPs are not compatible with any particular
symmetry (Haykin, 1994), despite being theoretically proven
universal function approximators (Cybenko, 1989; Hornik et al.,
1989). Architectures like CNNs and GNNs reflect single type
of symmetries (translations and permutations, respectively),
but active research is also looking into building techniques to
incorporate larger groups of symmetries into neural networks
(Anselmi et al., 2013; Gens and Domingos, 2014; Cohen and
Welling, 2016; Cohen et al., 2018).

One of the main reasons why incorporating symmetries into
neural networks helps is due to improvements in data efficiency.
Indeed, incorporating symmetries can reduce the volume of the

problem space, as illustrated in Figure 4. If we assume that the
data processed by our model are points in a 3D cube (Figure 4A),
when symmetries can be exploited, the models only need to
work with a subset of the cube (Figures 4B,C), which reduces
the volume of the input space. Provided the model respects
symmetries by construction, learning on this reduced space is
enough to learn on the entire cube. This naturally also leads to
improvements in generalization and transfer, since new points
outside of the training data distribution that can be obtained
by applying the known symmetries to the observed data will
be automatically recognizable. This principle has been exploited
in scientific applications of ML, such as free energy estimation
(Wirnsberger et al., 2020), protein folding (Fuchs et al., 2020;
Baek et al., 2021), or quantum chemistry (Pfau et al., 2020b;
Batzner et al., 2021).

An alternative to building symmetries into the model, is to
use data-augmentation and let the model learn the symmetries.
This is achieved by augmenting the training dataset (for example
images) with the relevant transformations of this data (for
example, all rotations and reflections of these images). This
principle has been used as a source of augmentations for self-
supervised contrastive learning approaches (Chen et al., 2020;
Grill et al., 2020). While these approaches have been shown to be
very effective in improving data efficiency on image classification
tasks, other research has shown that learning symmetries from
data augmentations is usually less effective than building them
into the model architecture (Cohen and Welling, 2016; Qi et al.,
2017; Veeling et al., 2018; Rezende et al., 2019; Köhler et al., 2020;
Satorras et al., 2021).

An alternative to hard wiring inductive biases into the
network architecture is to instead adjust the model’s learning
objective to make sure that its representations are equivariant
to certain symmetries. This can be done implicitly by adding
(unsupervised) regularizers to the main learning objective
(Bellemare et al., 2017; Jaderberg et al., 2017), or explicitly by
deciding on what a “good” representation should look like and
directly optimizing for those properties. One example of the
latter line of research is the work on disentangled6 representation
learning (Bengio, 2009; Bengio et al., 2013) (also see related
ideas in Schmidhuber, 1992; Hyvärinen, 1999). While originally

6Although the term “disentanglement” and its opposite “entanglement” are also

used in quantum mechanics (QM), and indeed the term “entanglement” refers to

a mixing of factors in both ML (through any diffeomorphism) and QM (through a

linear combinations), there is no deeper connection between the two.
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FIGURE 5 | (A) Simplified schematic showing discrete approximation of continuous translation and scale symmetries of 3D objects. Translations are applied along the

inner and outer circles. Scale transformations are applied along straight lines. (B) Translation and scale transformation commute with each other. They can be applied

in permuted order without affecting the final state. (C) Disentangling neural networks learn to infer a representation of an image that is a concatenation of independent

subspaces, each one being (approximately) equivariant to a single symmetry transformation. The model uses inference to obtain a low-dimensional representation of

an image, and generation to reconstruct the original image from the representation. Two example latent traversals demonstrate the effect on the image reconstruction

of smoothly varying the value of the position and size subspaces.

proposed as an intuitive framework that suggested that the
world can be described using a small number of independent
generative factors, and the role of representation learning is to
discover what these are and represent each generative factor
in a separate representational dimension (Bengio et al., 2013),
disentangling has recently been re-defined through a formal
connection to symmetries (Higgins et al., 2019). In this view,
a vector representation is seen as disentangled with respect
to a particular decomposition of a symmetry group into a
product of subgroups, if it can be decomposed into independent
subspaces where each subspace is affected by the action of a single
subgroup, and the actions of all the other subgroups leave the
subspace unaffected.

To understand this definition better, let’s consider a
concrete example of an object classification task (Figure 5A).
Transformations like changes in the position or size of an object
are symmetry transformations that keep the object identity
invariant. These transformations also commute with each other,
since they can be applied in random order without affecting
the final state of the world (Figure 5B). This implies that the

symmetry group used to describe the natural transformations
in this world can be decomposed into a product of separate
subgroups, including one subgroup that affects the position of an
object, and another one affecting its size.

Assuming that the symmetry transformations act on a set
of hypothetical ground truth abstract states of our world,
and the disentangling model observes high-dimensional image
renderings of such states, in which all the information about
object identity, size and position among other factors is
entangled, the goal of disentangled representation learning is to
infer a representation which is decomposed into independent
subspaces, where each subspace is affected only by a single
subgroup of our original group of symmetry transformations.
In other words, the vector space of such a representation
would be a concatenation of independent subspaces, such
that, for example, a change in size only affects the “size
subspace,” but not the “position subspace” or any other subspace
(Figure 5C). This definition of disentangled representations is
very general—it does not assume any particular dimensionality
or basis for each subspace. The changes along each of the
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subspaces in the representation may also be implemented by
an arbitrary, potentially non-linear mapping, although if this
mapping is linear, it can provide additional nice properties to
the representation (Higgins et al., 2018 call such a representation
a linear disentangled representations), since it means that the
task relevant information (e.g., the “stable cores” of color or
position attributes of the object) can be read out using linear
decoders, and “nuisance” information can be easily ignored using
a linear projection.

While the early approaches to disentangled representation
learning (including related ideas from nonlinear dimensionality
reduction literature, e.g., Hyvärinen, 1999; Hyvärinen and
Pajunen, 1999; Tenenbaum et al., 2000; Belkin and Niyogi, 2001;
Coifman and Lafon, 2006) either struggled to scale (Tenenbaum
et al., 2000; Desjardins et al., 2012; Tang et al., 2013; Cohen
and Welling, 2014, 2015) or relied on a form of supervision
(Hinton et al., 2011; Reed et al., 2014; Zhu et al., 2014; Cheung
et al., 2015; Goroshin et al., 2015; Kulkarni et al., 2015; Yang
et al., 2015; Karaletsos et al., 2016; Whitney et al., 2016), most of
the modern methods for successful unsupervised disentangling
(Higgins et al., 2017a; Achille et al., 2018; Chen et al., 2018;
Dupont, 2018; Kim and Mnih, 2018; Kumar et al., 2018;
Ridgeway and Mozer, 2018; Ansari and Soh, 2019; Caselles-
Dupré et al., 2019; Detlefsen and Hauberg, 2019; Dezfouli
et al., 2019; Esmaeili et al., 2019; Lorenz et al., 2019; Mathieu
et al., 2019; Ramesh et al., 2019; Lee et al., 2020; Quessard
et al., 2020) are based on the Variational AutoEncoder (VAE)
architecture (Kingma and Welling, 2014; Rezende et al., 2014)—
a generative network that learns by predicting its own inputs.
The base VAE framework learns a compressed representation
that maximizes the marginal likelihood of the data and are
related to the idea of “mean field approximation” from physics.
In this framework no explicit desiderata are made about the
representational form—as long as the distribution of the learnt
data representation is close to the chosen prior (which often
consists of independent unit Gaussians), it is considered to be
acceptable. Disentangling VAEs, on the other hand, aim to learn
a representation of a very particular form—it has to decompose
into independent subspaces, each one reflecting the action of a
single symmetry transformation. Disentangling VAEs typically
work by adjusting the VAE learning objective to restrict the
capacity of the representational bottleneck. This is usually done
by encouraging the representation to be as close to the isotropic
unit Gaussian distribution as possible, hence also encouraging
factorization. Although it has been proven that unsupervised
disentangled representation learning in this setting should be
theoretically impossible (Locatello et al., 2019), these approaches
work in practice by exploiting the interactions of the implicit
biases in the data and the learning dynamics (Burgess et al.,
2018; Locatello et al., 2019; Mathieu et al., 2019; Rolinek et al.,
2019). Since these approaches are not optimizing for symmetry-
based disentanglement directly, they are not principled and
struggle to scale. However, they have been shown to learn an
approximate symmetry-based disentangled representation (for
example they often lose the cyclical aspect of the underlying
symmetry) that still preserves much of the group structure (e.g.,
the commutativity of the symmetries) and hence serves as a

useful tool for both understanding the benefits of symmetry-
based representations in ML models, and as a computational
model for studying representations in the brain (Soulos and Isik,
2020; Higgins et al., 2021a). In the meantime, new promising
approaches to more scalable and/or principled disentanglement
are starting to appear in the ML literature (Besserve et al., 2020;
Pfau et al., 2020a; Higgins et al., 2021b; Wang et al., 2021).

In order to generalize learnt skills to new situations, it is
helpful to base learning only on the smallest relevant subset
of sensory variables, while ignoring everything else (Canas
and Jones, 2010; Jones and Canas, 2010; Bengio et al., 2013;
Niv et al., 2015; Leong et al., 2017; Niv, 2019). Symmetry-
based representations make such attentional attenuation very
easy, since meaningful sensory variables get separated into
independent representational subspaces, as was demonstrated in
a number of ML papers (Higgins et al., 2017b; Locatello et al.,
2020). Following the reasoning described earlier, disentangled
representations have also been shown to help with data efficiency
when learning new tasks (Locatello et al., 2020; Wulfmeier
et al., 2021). Finally, disentangled representations have also been
shown to be a useful source of intrinsically motivated transferable
skill learning. By learning how to control their own disentangled
subspaces (e.g., how to control the position of an object), it has
been shown that RL agents with disentangled representations
could discover generally useful skills that could be readily re-
used for solving new tasks (e.g., how to stack objects) in a more
data efficient manner (Achille et al., 2018; Laversanne-Finot et al.,
2018; Grimm et al., 2019; Wulfmeier et al., 2021).

4. SYMMETRIES IN NEUROSCIENCE

Although psychology and cognitive science picked up the
mathematical framework of group theory to describe invariances
and symmetry in vision a long time ago (Dodwell, 1983),
this framework was not broadly adopted and progress in this
direction quickly stalled (although see Liao et al., 2013; Leibo
et al., 2017). However, circumstantial evidence from work
investigating the geometry of neural representations suggests
the possibility that the brain may be learning symmetry-
based representations. For example, factorized representations of
independent attributes, such as orientation and spatial frequency
(Hubel and Wiesel, 1959; Mazer et al., 2002; Gáspár et al., 2019)
or motion and direction tuning (Grunewald and Skoumbourdis,
2004) have long been known to exist at the start of the ventral
visual stream in V1. Going further along the visual hierarchy,
Kayaert et al. (2005) demonstrated that many of the primate IT
neurons had monotonic tuning to the generative dimensions of
toy visual stimuli, such as curvature, tapering or aspect ratio,
known to be discriminated independently from each other by
humans in psychophysical studies (Arguin and Saumier, 2000;
Stankiewicz, 2002; de Beeck et al., 2003). In particular, they found
that the firing of each neuron was modulated strongly by its
preferred generative attribute but significantly less so by the other
generative attributes (Figure 6A).

More recently, Chang and Tsao (2017) investigated the coding
properties of single IT neurons in the primate face patches.
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FIGURE 6 | Examples of axis-based coding at the end of the ventral visual stream. (A) Single IT cell shows preference to a single transformation (change in positive

curvature) regardless of the geometric shape (triangle or rectangle). Single IT cell responds to changes in curvature of the triangle while being invariant to changes in

length, changes in tapering of the rectangle while being invariant to changes in curvature, and changes in negative curvature of the rectangle while being invariant to

changes in tapering. Bars are standard errors in response to multiple stimulus presentations (14 on average). Adapted form Kayaert et al. (2005). (B) Single IT cells

have ramped responses proportional to changes along their preferred axis of variation in the generative face space, and no changes in their responses to orthogonal

directions in the face space. Adapted from Chang and Tsao (2017). (C) Single cells in the IT have strong one-to-one alignment to single subspaces discovered

through disentangled representation learning. Adapted from Higgins et al. (2021a). (D) Different representation geometries have different trade-offs in terms of how

much they support generalization as measured by the abstraction scores (green), and how expressive they are as measured by the shattering dimensionality score

(orange). Representations in the prefrontal cortex (PFC) and hippocampus (HPS) of primates, as well as in the final layer of a neural network trained to solve multiple

tasks in the reinforcement learning framework were found to exhibit disentangling-like geometry highlighted in blue that scores well on to both metrics. Adapted from

Bernardi et al. (2020).

By parameterizing the space of faces using a low-dimensional
code, they were able to show that each neuron was sensitive
to a specific axis in the space of faces spanned by as few
as six generative dimensions on average, with different cells
preferring different axes. Moreover, the recorded IT cells were
found to be insensitive to changes in directions orthogonal to

their preferred axis, suggesting a low-dimensional factorized
representation reminiscent of disentangled representations from
ML (Figure 6B). To directly test whether the two representations
resembled each other, Higgins et al. (2021a) compared the
responses of single cells in the IT face patches to disentangled
latent units discovered by a model exposed to the same faces as
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the primates (Figure 6C). By measuring the alignment between
the two manifolds, the authors were able to compare the two
representational forms in a way that was sensitive to linear
transformations (unlike the traditional measures of similarity
used in the neuroscience literature, like explained variance
Cadieu et al., 2007; Khaligh-Razavi andKriegeskorte, 2014; Güçlü
and van Gerven, 2015; Yamins and DiCarlo, 2016; Cadena et al.,
2019 or Representational Similarity Analysis Kriegeskorte et al.,
2008; Khaligh-Razavi and Kriegeskorte, 2014, which are invariant
to linear transformations)—any rotation or shear of onemanifold
with respect to the other would result in reduced scores. The
authors found that there was a strong one-to-one alignment
between IT neurons and disentangled units to the point where
the small number of disentangled dimensions discovered by the
model were statistically equivalent to a similarly sized subset
of real neurons, and the alignment was significantly stronger
than that with supervised classifiers (which learn an invariant
representation) or the generative model used in Chang and Tsao
(2017). Furthermore, it was possible to visualize novel faces
viewed by the primates from the decoded activity of just 12
neurons through their best matched disentangled units. This
result established the first direct link between coding in single
IT neurons and disentangled representations, suggesting that the
brain may be learning representations that reflect the symmetries
of the world. Other recent work showed that disentangled
representations can also predict fMRI activation in the ventral
visual stream (Soulos and Isik, 2020).

While many of the existing approaches to disentangled
representation learning are generative models, thus fitting
well within the predictive coding and free energy principle
(Elias, 1955; Srinivasan et al., 1982; Rao and Ballard, 1999;
Friston, 2010; Clark, 2013) hypotheses of brain function, an
alternative biologically plausible way to learn disentangled
representations was recently proposed by Johnston and Fusi
(2021). The authors showed that disentangled representations
can arise from learning to solve numerous diverse tasks in
a supervised manner, which would be required to produce
the complex behaviors that biological intelligence exhibits in
the natural world. A similar result was also demonstrated
by Bernardi et al. (2020), who looked into the geometry of
neural representations for solving tasks in the RL framework
in both primates and neural networks. They found that the
final layer of an MLP trained through RL supervision to
solve a number of tasks, as well as the dorsolateral prefrontal
cortex, the anterior cingulate cortex and the hippocampus
of primates exhibited disentangled-like qualities. Although the
representations of the underlying task variables were rotated
in the space of neural activation (unlike the axis aligned codes
described in Higgins et al., 2021a), the underlying geometry
was in line with what would be expected from disentangled
representations (see also Minxha et al., 2020; Panichello and
Buschman, 2021; Rodgers et al., 2021; She et al., 2021; Boyle
et al., 2022 for further evidence of not axis-aligned disentangled-
like representations in different brain areas of various species).
The authors found that the degree to which such geometry
was present correlated with the primates success on the tasks
(no such correlation existed for the more traditional decoding

methods that do not take the geometry of the representation
into account), and that such representations supported both
strong generalization (as measured by the abstraction scores) and
high representational capacity (as measured by the shattering
dimensionality scores) (Figure 6D).

Further validation of the biological plausibility of disentangled
representation learning comes from comparing the data
distribution that many modern ML approaches require for
optimal disentangling to the early visual experiences of infants
(Smith et al., 2018; Wood and Wood, 2018; Slone et al., 2019).
It appears that the two are similar, with smooth transformations
of single objects dominating both (Figure 7A). Disentangled
representation also have properties that are believed to be true
of the visual brain, such as “Euclideanization” or straightening
of complex non-linear trajectories in the representation space
compared to the input observation space (Hénaff et al., 2019)
(Figure 7B), and factorization into semantically interpretable
axes, such as color or shape of objects (Figure 7C), which
are hypothesized to be important for more data efficient and
generalizable learning (Behrens et al., 2018), and for supporting
abstract reasoning (Bellmund et al., 2018). It is hypothesized
that the same principles that allow biological intelligence to
navigate the physical space using the place and grid cells may
also support navigation in cognitive spaces of concepts, where
concepts are seen as convex regions in a geometric space
spanned by meaningful axes like engine power and car weight
(Gärdenfors, 2004; Gardenfors, 2014; Balkenius and Gärdenfors,
2016). Learning disentangled representations that reflect the
symmetry structure of the world could be a plausible mechanism
for discovering such axes. Evidence from the ML literature has
already demonstrated the utility of disentangled representations
for basic visual concept learning, imagination, and abstract
reasoning (Higgins et al., 2018; Steenbrugge et al., 2018; van
Steenkiste et al., 2019; Locatello et al., 2020).

5. DISCUSSION

The question of what makes a good representation has
been historically central to both ML and neuroscience, and
both disciplines have faced the same debate: whether the
best representation to support intelligent behavior should
be low-dimensional and interpretable or high-dimensional
and multiplexed. While the former dominated both early
neuroscience (Hubel and Wiesel, 1959; Barlow, 1972) and ML
(early success of feature engineering), recent development of
high-throughput recording methods in neuroscience (Yuste,
2015; Eichenbaum, 2018; Saxena and Cunningham, 2019) and
the success of large black-box deep learning models in ML
(Vaswani et al., 2017; Hu et al., 2018) have shifted the preference
in both fields toward the latter. As a consequence, this led to deep
classifiers emerging as the main computational models for the
ventral visual stream (Yamins et al., 2014; Yamins and DiCarlo,
2016), and a belief that higher-level sensory representations that
can support diverse tasks are too complex to interpret at a
single neuron level. This pessimism was compounded by the
fact that designing stimuli for discovering interpretable tuning
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FIGURE 7 | Similarities between various aspects of disentangled representation learning in ML (right column) and visual representation learning in the brain (left

column). (A) The properties of the visual data obtained through a head camera from toddlers (Smith et al., 2018; Slone et al., 2019) is similar to the properties of the

visual data that allows ML approaches to discover disentangled representations. The scenes are uncluttered, and contain many continuous transformations of few

objects at a time. (B) Perceptual straightening of natural image trajectories observed in human vision (Hénaff et al., 2019) is similar to the “Euclidenization” of the latent

space learnt by disentangled ML models. (C) Factorized representations that align with semantically meaningful attributes hypothesized to be important for further

processing in the hippocampus (Behrens et al., 2018; Bellmund et al., 2018) resembles the factorized representations learnt by disentangled ML models.

in single cells at the end of the sensory processing pathways is
hard. While it is easy to systematically vary stimulus identity,
it is hard to know what the other generative attributes of

complex natural stimuli may be, and hence to create stimuli that
systematically vary along those dimensions. Furthermore, new
representation comparison techniques between computational
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models and the brain became progressively population-based
and insensitive to linear transformations (Kriegeskorte et al.,
2008; Khaligh-Razavi and Kriegeskorte, 2014; Yamins and
DiCarlo, 2016), thus further stalling progress toward gaining a
more fine-grained understanding of the representational form
utilized by the brain (Thompson et al., 2016; Higgins et al.,
2021a). At the same time, it is becoming increasingly unlikely
that high-dimensional, multiplexed, uninterpretable population-
based representations like those learnt by deep classifiers are the
answer to what makes a “good” representation to support general
intelligence, since ML research has shown that models with such
representations suffer from problems in terms of data efficiency,
generalization, transfer, and robustness—all the properties that
are characteristic of biological general intelligence. In this article,
we have argued that representations which reflect the natural
symmetry transformations of the world may be a plausible
alternative. This is because both the nature of the tasks, and
the evolutionary development of biological intelligence are
constrained by physics, and physicists have been using symmetry
transformations to discover and study the “joints” and the
“stable cores” of the world for the last century. By studying
symmetry transformations, physicists have been able to reconcile
explanatory frameworks, systematically describe physical objects
and even discover new ones. Representations that are equivariant
to symmetry transformations are therefore likely to expose the
relevant invariants of our world that are useful for solving
natural tasks. From the information theory perspective, such
representations can be viewed as the simplest (in the context
of Solomonoff induction; Solomonoff, 1964) and the most
informative representations of the input to support the most

likely future tasks (MacKay, 1995, 2003;Wallace and Dowe, 1999;
Hutter, 2004; Schmidhuber, 2010).

We have introduced the basic mathematical language
for describing symmetries, and discussed evidence from
ML literature that demonstrates the power of symmetry-
based representations in bringing better data efficiency,
generalization, and transfer when included into ML systems.
Furthermore, emerging evidence from the neuroscience
community suggests that sensory representations in the
brain may also be symmetry-based. We hope that our
review will give the neuroscience community the necessary
motivation and tools to look further into how symmetries
can explain representation learning in the brain, and to
consider them as an important general framework that
determines the structure of the universe, constrains the nature
of natural tasks and consequently shapes both biological and
artificial intelligence.

AUTHOR CONTRIBUTIONS

IH and SR contributed to writing the review. DR contributed
comments, discussions, and pointers that shaped the paper.
All authors contributed to the article and approved the
submitted version.

ACKNOWLEDGMENTS

We would like to thank Fabian Fuchs, David Pfau, and
Christopher Summerfield for interesting discussions, useful
comments, and providing references.

REFERENCES

Achille, A., Eccles, T., Matthey, L., Burgess, C. P., Watters, N., Lerchner, A., et

al. (2018). “Life-long disentangled representation learning with cross-domain

latent homologies,” in Advances in Neural Information Processing Systems

(NeurIPS) (Montreal, QC).

Agostini, A., and Celaya, E. (2009). “Exploiting domain symmetries in

reinforcement learning with continuous state and action spaces,” in 2009

International Conference on Machine Learning and Applications (Montreal,

QC), 331–336. doi: 10.1109/ICMLA.2009.41

Anand, A., Grover, A., and Singla, P. (2016). Contextual symmetries

in probabilistic graphical models. arXiv preprint: arXiv:1606.09594.

doi: 10.48550/arXiv.1606.09594

Ansari, A. F., and Soh, H. (2019). “Hyperprior induced unsupervised

disentanglement of latent representations,” in Proceedings of the Thirty-

Third AAAI Conference on Artificial Intelligence (AAAI) (Honolulu).

doi: 10.1609/aaai.v33i01.33013175

Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T.

(2013). Unsupervised learning of invariant representations in hierarchical

architectures. arXiv preprint: arXiv:1311.4158. doi: 10.48550/arXiv.1311.4158

Arguin, M., and Saumier, D. (2000). Conjunction and linear non-

separability effects in visual shape encoding. Vis. Res. 40, 3099–3115.

doi: 10.1016/S0042-6989(00)00155-3

Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.

R., et al. (2021). Accurate prediction of protein structures and interactions

using a three-track neural network. Science 373, 871–876. doi: 10.1126/science.

abj8754

Balkenius, C., and Gärdenfors, P. (2016). Spaces in the brain: from neurons to

meanings. Front. Psychol. 7:1820. doi: 10.3389/fpsyg.2016.01820

Barlow, H. B. (1972). Single units and sensation: a neuron doctrine for perceptual

psychology? Perception 1, 371–394. doi: 10.1068/p010371

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,

V., Malinowski, M., et al. (2018). Relational inductive biases, deep

learning, and graph networks. arXiv preprint: arXiv:1806.01261.

doi: 10.48550/arXiv.1806.01261

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth,

M., et al. (2021). SE(3)-equivariant graph neural networks for data-

efficient and accurate interatomic potentials. arXiv preprint: arXiv:2101.03164.

doi: 10.21203/rs.3.rs-244137/v1

Behrens, T. E., Muller, T. H.,Whittington, J. C., Mark, S., Baram, A. B., Stachenfeld,

K. L., et al. (2018). What is a cognitive map? organizing knowledge for flexible

behavior. Neuron 100, 490–509. doi: 10.1016/j.neuron.2018.10.002

Belkin, M., and Niyogi, P. (2001). “Laplacian eigenmaps and spectral techniques

for embedding and clustering,” in Advances in Neural Information Processing

Systems (Vancouver, BC), 585–591.

Bellemare, M. G., Dabney, W., andMunos, R. (2017). “A distributional perspective

on reinforcement learning,” in International Conference on Machine Learning

(Sydney), 449–458.

Bellmund, J. L. S., Gärdenfors, P., Moser, E. I., and Doeller, C. F. (2018).

Navigating cognition: spatial codes for human thinking. Science 362:6415.

doi: 10.1126/science.aat6766

Bengio, Y. (2009). Learning deep architectures for AI. Found. Trends Mach. Learn.

2, 1–127. doi: 10.1561/9781601982957

Bengio, Y. (2012). “Deep learning of representations for unsupervised and transfer

learning,” in Proceedings of ICML Workshop on Unsupervised and Transfer

Learning, eds I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

(Washington, DC: PMLR), 17–36. Available online at: http://proceedings.mlr.

press/v27/bengio12a/bengio12a.pdf

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2022 | Volume 16 | Article 836498

https://doi.org/10.1109/ICMLA.2009.41
https://doi.org/10.48550/arXiv.1606.09594
https://doi.org/10.1609/aaai.v33i01.33013175
https://doi.org/10.48550/arXiv.1311.4158
https://doi.org/10.1016/S0042-6989(00)00155-3
https://doi.org/10.1126/science.abj8754
https://doi.org/10.3389/fpsyg.2016.01820
https://doi.org/10.1068/p010371
https://doi.org/10.48550/arXiv.1806.01261
https://doi.org/10.21203/rs.3.rs-244137/v1
https://doi.org/10.1016/j.neuron.2018.10.002
https://doi.org/10.1126/science.aat6766
https://doi.org/10.1561/9781601982957
http://proceedings.mlr.press/v27/bengio12a/bengio12a.pdf
http://proceedings.mlr.press/v27/bengio12a/bengio12a.pdf
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Higgins et al. Symmetries in ML and Neuroscience

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: a review

and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828.

doi: 10.1109/TPAMI.2013.50

Bernardi, S., Benna, M. K., Rigotti, M., Munuera, J., Fusi, S., and Salzman, C. D.

(2020). The geometry of abstraction in the hippocampus and prefrontal cortex.

Cell 183, 954–967. doi: 10.1016/j.cell.2020.09.031

Besserve, M., Mehrjou, A., Sun, R., and Scholkopf, B. (2020). “Counterfactuals

uncover the modular structure of deep generative models,” in International

Conference on Learning Representations. Available online at: https://

openreview.net/forum?id=SJxDDpEKvH

Boyle, L., Posani, L., Irfan, S., Siegelbaum, S. A., and Fusi, S. (2022). The

geometry of hippocampal CA2 representations enables abstract coding of social

familiarity and identity. bioRxiv [Preprint]. doi: 10.1101/2022.01.24.477361

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric
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